Discovering Rules from Data for Water Demand Prediction

نویسندگان

  • Aijun An
  • Ning Shan
  • Christine Chan
  • Nick Cercone
  • Wojciech Ziarko
چکیده

Prediction of consumer demands is a pre-requisite for optimal control of water distribution systems. In this paper, we present a rough set method for generating prediction rules from a set of observed data. The proposed method is based on an extension of the standard rough set model. The salient feature of this method is that it makes use of the statistical information inherent in the data to handle incomplete and ambiguous training samples. Experimental results from using this method for water demand prediction are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پیش بینی تقاضای کوتاه مدت آب شهر تهران با استفاده از شبکه های عصبی مصنوعی

Short-term water demand modeling plays a key role in urban water resources planning and management. The importance of demand prediction is even greater in countries like Iran with frequent periods of drought. Short-term water demand estimation is useful for planning and management of water and wastewater facilities such as pump scheduling, control of reservoirs and tanks volume, pressure manage...

متن کامل

Investigating the accuracy of multivariate regression and ARIMA models in predicting water demand (Case Study: Mashhad city)

Awareness of water demand is of particular importance for its policy in urban management. Predicting water demand in the future will allow managers to take the necessary measures regarding sustainable water supply, given the constraints and crises ahead. The purpose of this study is to compare multivariate regression and ARIMA models to predict water demand in Mashhad. In this study, first, the...

متن کامل

A Genetic Algorithm For Discovering Interesting Fuzzy Prediction Rules: Applications To Science And Technology Data

Data mining consists of extracting knowledge from data. This paper addresses the discovery of knowledge in the form of prediction IF-THEN rules, which are a popular form of knowledge representation in data mining. In this context, we propose a new Genetic Algorithm (GA) designed specifically for discovering interesting fuzzy prediction rules. The GA searches for prediction rules that are intere...

متن کامل

Text Mining with Information Extraction

The popularity of the Web and the large number of documents available in electronic form has motivated the search for hidden knowledge in text collections. Consequently, there is growing research interest in the general topic of text mining. In this paper, we develop a text-mining system by integrating methods from Information Extraction (IE) and Data Mining (Knowledge Discovery from Databases ...

متن کامل

A Distributed-Population Genetic Algorithm for Discovering Interesting Prediction Rules

In data mining the quality of prediction rules basically involves three criteria: accuracy, comprehensible and interestingness. The majority of the rule induction literature focuses on discovering accurate, comprehensible rules. In this paper we also take these two criteria into account, but we go beyond them in the sense that we aim at discovering rules that are interesting (surprising) for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995